The Focus and Directrix of a Parabola

A parabola is made up of points that are equidistant from a point called the ______and a line

called the _____.

- The axis of symmetry is ______ going through the
- The vertex is ½ way between the _____ on the

A New Equation of a Parabola

$$y = a(x - h)^2 + k$$

- EX. Find the vertex, axis of symmetry, focus and directrix for $(x + 3)^2 = -20(y 1)$.
 - a. Which variable is squared? So which way does it face?
 - b. What is the value of p? Which way does it open?

Name ______EX. Find the vertex, axis of symmetry, focus and directrix for $(y-3)^2 = 8(x-5)$.

- a. Which variable is squared? So which way does it face?
- b. What is the value of p? Which way does it open?

EX. Find the vertex, axis of symmetry, focus and directrix for $y^2 + 6y + 12x - 15 = 0$.

EX. Find the equation of a parabola with a focus of (4, 0) and a directrix of x = -4.

EX. Find the equation of a parabola with a focus of (3, -2) and a directrix of y = -8.